Sini - Chandil Railway Line | India
train-detection, servicesIndia

Sini - Chandil Railway Line | India

Operator
Indian Railways – South Eastern Railway
Country
India
Partner
MRT Signal
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC, Frauscher Insights
Year
Since 2019
Scope of project
136 counting heads

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.

The Sini-Chandil railway line in Jharkhand, India, is a vital connection for passengers and goods in the region. Initially, it used a direct current (DC) track circuit system, which faced challenges like waterlogging and frequent breakage of insulated joints, especially during the monsoon season. To address these issues, Indian Railways upgraded to the Frauscher Advanced Counter FAdC together with Wheel Sensor RSR180. Thanks to the renowned reliability and availability of these solutions, the operator was able to achieve higher system uptime, greater system reliability and lower maintenance costs alongside an array of additional benefits. Moreover, the robust design of the Wheel Sensor RSR180, coupled with its IP68-certified protection against water and dust ingress, enables it to withstand extreme environmental conditions, including flooding, making it an ideal solution for this project.

Proactive and predictive maintenance

Thanks to Frauscher Insights, the operator was able to undertake proactive and predictive maintenance procedures, increasing line availability and reducing maintenance costs.

Efficient railway operations

Frauscher Advanced Counter FAdC together with the Wheel Sensor RSR180 are reliable systems that deliver smoother, safer and more efficient rail operations with increased uptime and reduced maintenance costs.

Highly resistant to harsh weather conditions

Wheel Sensor RSR180 has a robust design with IP68 protection, making it suitable for projects in harsh environments, including frequent flooding at the trackside.

Additionally, Frauscher Insights, a digital cloud based diagnostic platform was implemented to further optimise railway operations and enable the customer to undertake preventive and predictive maintenance. Frauscher Insights is an intelligent data platform which collects and enriches data obtained from train detection and makes them accessible through the applications Frauscher Insights Diagnostics and Motion, allowing the operator to derive additional value from their data. Frauscher Insights Diagnostics offers in-depth system overviews via a clear dashboard, facilitating proactive maintenance, while Frauscher Insights Motion digitises field service coordination, streamlining workflows and centralising information.

Frauscher Insights benefited the railway operator by significantly reducing system failures and improving overall network efficiency. By providing real-time data, the platform enabled early detection of potential issues, allowing proactive repairs and minimising disruptions. This led to smoother traffic flow, fewer delays, and increased line capacity, as more trains could operate on the same infrastructure. The system also reduced the need for routine inspections by focusing on areas likely to encounter issues, saving time and resources. When failures did occur, Frauscher Insights Diagnostics helped engineers to quickly identify root causes, further minimising downtime. As a cloud-based system, it provides easy remote access to data, enhancing operational flexibility. Combined with the Frauscher Advanced Counter FAdC and Wheel Sensor RSR180, Frauscher delivered a reliable, holistic and cost-effective solution tailored to the operator's needs.

Similar Projects
This might also interest you
1/5
train-detectionFrance

Extension Line D Tram Bordeaux | France

The Bordeaux tramway was the first French tram system equipped with a Frauscher axle counting system, benefitting from the innovative management methods like Counting Head Control.
train-detectionCanada

Edmonton Metro Line | Canada

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionTaiwan

Shalun Signaling | Taiwan

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.