Maintaining the past, creating the future | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Maintaining the past, creating the future | UK

Operator
Dean Forest Railway
Country
United Kingdom of Great Britain and Northern Ireland
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC
Year
2019

The Dean Forest Railway (DFR) operates a historical 7 km passenger service line running north from Lydney Junction to Parkend, in the Forest of Dean. Due to extensions of the line and an additional turnout being added at Parkend, an update and modernisation of the existing train detection and signalling system was necessary. Being a heritage railway, it requires high standards in terms of signalling and safety, whilst maintaining the historical touch of the line.

The train detection system had to be integrated into the mechanical interlocking that was also being restored to bring Parkend signal box back to life. Achieving the necessary ballast resistance to reliably operate track circuits would have involved relaying a large portion of track. Together with the maintenance requirements of additional track circuits, this would have been too time-consuming, as the line is operated by a volunteer workforce. Alternatively, extending the original token system would have reduced the number of income-generating services. Thus, a different method of track vacancy detection was necessary.

Based on previous positive experiences, DFR decided to go for an axle counter solution from Frauscher. To provide maximum flexibility and meet the variety of requirements defined, the Frauscher Advanced Counter FAdC was chosen. On track, nine Frauscher Wheel Sensors RSR123 are now detecting even the old steam train’s wheel flanges highly reliably. Using the system’s ability of establishing individual architectures, the axle counter was collocated with the interlocking inside the existing signal box. Track vacancy detection data is provided to be electronically integrated into the mechanical interlocking. Additionally, Supervisor Track Sections STS and Counting Head Control CHC are providing maximum availability and system resilience. The Frauscher Diagnostic System FDS provides DFR’s experts with remote access to real-time diagnostic data.

Quick installation

With the assistance of the Frauscher UK employees, installing and commissioning the FAdC and Wheel Sensors RSR123 took only six days, including laying the cable. This resulted in a minimum downtime on site.

Reduction of ongoing maintenance costs

The possibility of remote diagnostics ensures that a time related benefit is given during operation as well, as it can help off duty staff members to support their colleagues onsite and reduce ongoing maintenance costs. Data configuration and consistency of spare parts, allows for future remodelling and expansion work.

Similar Projects
This might also interest you
1/5
train-detectionCanada

City of Calgary Grade Crossing Upgrade | Canada

The City of Calgary in Alberta, Canada was seeking an upgrade to the existing signaling system at a crossing near a station in the downtown area, to alleviate shunt issues caused by winter conditions. The Frauscher Advanced Counter FAdC and Wheel Sensors RSR180 were chosen to augment the existing system. During the eleven month trial period, the axle counter ran in shadow mode with the legacy system to gauge performance and compatibility. After the axle counter was proven during the trial with no faults or errors, the city was able to implement a hybrid crossing design using both the axle counting system and track circuits.
train-detection, servicesIndia

Sini - Chandil Railway Line | India

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionCanada

Edmonton Metro Line | Canada

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
train-detectionGermany

Dillinger Hütte | Germany

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdCi in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.