Frauscher Sensor Technology has completed the divestiture to Wabtec Corporation.

Find Out More
Metro Warsaw | Poland
Train DetectionPoland

Metro Warsaw

Operator
Metro Warsaw
Country
Poland
Partner
Rail-Mil
Segment
Urban
Application
Track Vacancy Detection
Year
2015
Scope of project
approx. 700 wheel sensors installed

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS2000.

The Warsaw Metro currently consists of two lines, with a third one planned. Urban lines are characteristically exposed to high traffic density, therefore the operator was looking for a solution which allows trouble-free operation for line M2. Keeping maintenance windows at a minimum was another requirement to the signalling technology.

To meet these expectations, the Frauscher Axle Counter ACS2000 with wheel sensor RSR180 has been implemented by Rail-Mil. The advantage of this system is the quick and efficient integration into existing signalling technology systems as it provides widely used hardware interfaces.

In combination with comprehensive diagnostic possibilities, the whole solution ensures reliable operation and cost-effective maintenance.

After years of successful implementation, Warsaw Metro decided to use the ACS2000 on further projects and even replaced existing track circuit installations on line M1. This project proves that modern axle counters are a key solution for future-oriented and sustainable rail systems.

Tried and tested technology

The highly reliable RSR180 has undergone continual development over more than 30 years. It is resistant to disturbances caused by magnetic rail brakes and can be used in grooved rails.

Easy configuration and efficient integration

The ACS2000 allows easy configuration via widely used hardware interfaces and is therefore efficiently integrated into existing signalling technology systems.

Similar Projects
This might also interest you
1/5
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions.
Train DetectionCanada

Edmonton Metro Line

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
Train DetectionUnited States of America

Tracking Trains in Houston

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
Train DetectionSpain

Three-rail Castellbisbal

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.