Metro Warsaw | Poland
Train DetectionPoland

Metro Warsaw

Operator
Metro Warsaw
Country
Poland
Partner
Rail-Mil
Segment
Urban
Application
Track Vacancy Detection
Year
2015
Scope of project
approx. 700 wheel sensors installed

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS2000.

The Warsaw Metro currently consists of two lines, with a third one planned. Urban lines are characteristically exposed to high traffic density, therefore the operator was looking for a solution which allows trouble-free operation for line M2. Keeping maintenance windows at a minimum was another requirement to the signalling technology.

To meet these expectations, the Frauscher Axle Counter ACS2000 with wheel sensor RSR180 has been implemented by Rail-Mil. The advantage of this system is the quick and efficient integration into existing signalling technology systems as it provides widely used hardware interfaces.

In combination with comprehensive diagnostic possibilities, the whole solution ensures reliable operation and cost-effective maintenance.

After years of successful implementation, Warsaw Metro decided to use the ACS2000 on further projects and even replaced existing track circuit installations on line M1. This project proves that modern axle counters are a key solution for future-oriented and sustainable rail systems.

Tried and tested technology

The highly reliable RSR180 has undergone continual development over more than 30 years. It is resistant to disturbances caused by magnetic rail brakes and can be used in grooved rails.

Easy configuration and efficient integration

The ACS2000 allows easy configuration via widely used hardware interfaces and is therefore efficiently integrated into existing signalling technology systems.

Similar Projects
This might also interest you
1/5
Train DetectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
Train DetectionCanada

Toronto Transit Commission

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
ServicesAustria

Salzburger Lokalbahn

Frauscher supported the Salzburger Lokalbahn, a regional railway in Austria, with a service assignment that included both the maintenance of Frauscher wheel sensors and axle counters as well as hands-on training for the installation personnel. The customer benefited from efficient troubleshooting and tailored training delivered directly on their own equipment.
Train DetectionIndia

Increasing Availability at Adra Yard

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.
Data TransmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.