Tram Huangpu Line 1 | China
Train DetecionChina

Tram Huangpu Line 1 | China

Operator
Young Tram
Country
China
Partner
CRSC Xi’an
Segment
Urban
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Year
2019

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations. To provide safe and efficient wheel detection on this line, the Frauscher Advanced Counter FAdC® was installed with a customised protocol based on the Chinese Standard by Chinese Ministry of Railways.

Tram Huangpu Line 1 (HP1) is the first tram line in Huangpu District of Guangzhou, which stretches 14,4 kilometers from Xiangxue Station to Xinfeng Station with a total of 20 stations and can support trams running at a maximum speed of 70 km/h.

The line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions in Guangzhou, including heavy rain, typhoons and high humidity levels, can subsequently cause flooding of the track bed which may affect operation.

To ensure smooth operation in harsh conditions like floods, the IP68 rated Wheel Sensor RSR180 was installed in combination with the Frauscher Advanced Counter FAdC®. As the FAdC® can be configured with a customised protocol, it was decided to implement the Railway Signal Safety Protocol RSSP-I protocol–Type I of RSSP, which is introduced as Chinese standard by China’s Ministry of Railways. In close collaboration of CRSC Xi’an Railway Signal Co., Ltd. (CRSC Xi’an) and CRSC Research & Design Institute Group Co., Ltd. (CRSCD) together with Frauscher, the RSSP-implemented FAdC® product was provided for the ­first time with an efficient and customised service. The COM-RSSP has been given the CENELEC SIL 4 certification in March 2021.

High availability

The RSR180 is not impacted by environmental conditions such as flooding, snow or severe temperatures.

Customised interface

The software interface of the FAdC® can be conf­igured with the Frauscher Safe Ethernet FSE protocol or other customised protocols. Both Chinese and Austrian Frauscher teams worked together closely with the customer to provide the RSSP-implemented FAdC® solution with an efficient and customised service.

Increasing system availability

The implementation of the Supervisor Track Section STS functions takes negative effects such as lightning into account, reducing the costs and times of maintenance. Moreover, the STS can be integrated into a modern efficient interlocking system so that the troubleshooting and component replacement can be carried out simultaneously, saving time for operators.

Similar Projects
This might also interest you
1/5
Train DetectionPoland

Metro Warsaw | Poland

Metro Warsaw was looking for an alternative to track circuits for the line M2, to increase the availability of public transport by using reliable signalling technology. In the end, the operator even decided to replace the existing track circuits on line M1 with the Frauscher Axle Counter ACS200.
Train DetectionIndia

Vijayawada – Gannavaram Rail Line | India

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®.
Train DetectionSpain

Three-rail Castellbisbal | Spain

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.
Train DetectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
Kazakhstan

FAdC® at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.