London to Corby | UK
train-detectionUnited Kingdom of Great Britain and Northern Ireland

London to Corby | UK

Operator
Network Rail
Country
United Kingdom of Great Britain and Northern Ireland
Partner
Siemens Mobility Limited
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR123
Protocols
Proprietary protocols
Year
2020

The project was part of Network Rail’s Midland Main line electrification programme and involved re-signalling between Bedford and Kettering. The goal is the reduction of industry costs and environmental benefits through lighter rolling stock, reduced fuel costs and lower carbon emissions. Among others, the project included replacing existing Westpac and route relay interlockings with the Trackguard Westlock System as well as renewing the signalling equipment using the Trackguard Westrace Trackside System and Frauscher axle counters.

To replace the existing route relay interlocking with the Trackguard Westlock System, the Frauscher Advanced Counter FAdC® with RSR123 was implemented as the track vacancy detection system. To establish an interface with the Trackguard Westlock System, the track sections are output via the WNC failsafe ethernet protocol. The London to Corby project was set up with an A and a B Network. This guaranteed network redundancy for enhanced availability.

Since the RSR123 and the Frauscher Advanced Counter FAdC® do not require any trackside electronics, tail cables were connected to the signalling cable using Glenair plug couplers. Due to this, the amount of equipment trackside could be highly reduced. Trackside connection boxes were installed as installation and maintainer preference as well as plug couplers (i.e. head to Glenair plug coupler, coupler to dis box, dis-box to loc).

The RSR123 also complies with high standards in reliability and robustness which were required by the Network Rail Infrastructure.

Significant reduction of equipment

Tail cables could be directly connected to the signalling cable using plug couplers as no trackside electronics are needed when using the Frauscher technology. Furthermore, this led to a reduction of costs.

High standards in reliability

The RSR123 uses patented V.Mix Technology to ensure that it complies with high standards in reliability and robustness.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Axle Counter Overlay System | UK

Between London St Pancras International Station and Farringdon Station, there is a history of frequent flooding through the tunnels that adversely affected the reliability of the existing train detection system. Due to this, the installation was non-operational during large periods. However, being a mainline section and a core route through London, high reciliation to any sort of failures is vital.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionCanada

Edmonton Metro Line | Canada

The Edmonton Metro Line was experiencing significant issues with its newly installed Communications Based Train Control (CBTC) signalling system, which did not perform to the operator‘s expectations. The city was forced to run an incomplete schedule with reduced train speed and frequency which negatively affected commuters and the city of Edmonton in general. Finally in 2019, the operator decided to install a new system in cooperation with Frauscher.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.