train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

Country
United States of America
Segment
Urban
Application
Triggering of Systems
Products
RSR180, FAdC®
Year
2022
Scope of project
3 counting heads

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.

The primary goal for any busy Metro line is to move passengers safely and efficiently. When consistent and unnecessary delays interfere with such goals, operators eventually look for improvements. In this instance, consultants were tasked with finding a solution, focusing on the legacy signaling system that was unable to offer relief from the bottlenecks.

The main issue leading to delays involved the switch located directly after the station platform being locked in its position for 30 seconds when the approach is occupied. Stopped trains that require the switch to be thrown in reverse position would have to wait for a 30 second ASR (Approach Stick Relay) timer to expire.

In conjunction with the operator, Frauscher was able to design a simple wheel detection solution that positively verifies when a train is berthed at the station platform, allowing a bypass of the 30 second timer. The berthing is verified within 5 seconds, allowing unnecessary dwell time to be saved each time a train takes a route requiring the switch to be thrown. The operator reported dwell time reductions of 40 minutes per day since the system has been in service.

Improved Controls

More granular detection of berthed trains; vital and fail-safe system

Reduction in delays

Allows for quicker response times at timing circuits, providing relief at bottleneck areas and a daily savings of approximately 40 minutes dwell time per day

Ease of Integration

The flexibility of the Frauscher system allowed for a seamless integration with the existing relay-based signal system

Similar Projects
This might also interest you
1/5
train-detectionSerbia

Hungary-Serbia Railway Project | Serbia

The Hungary-Serbia Railway Project is an iconic project of the “One Belt One Road” Initiative between China and CEE countries. Frauscher provides not only high-quality solutions but also detailed technical support and clarification.
train-detectionKazakhstan

FAdC® at Vhodnaya Station | Kazakhstan

ArcelorMittal is responsible for the operation of a dedicated industrial railway infrastructure located in Temirtau, Kazakhstan. At Vhodnaya station, an essential shunting yard, various goods and materials, such as polyester, zinc, aluminium, sinter, iron ore, and coke-chemical products, are loaded and unloaded. The station's robust infrastructure features 64 switching points and 68 signals, necessitating the use of a high-performing train detection system to ensure the safe and efficient management of traffic flow.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detection, servicesIndia

Sini - Chandil Railway Line | India

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.