Toronto Transit Commission | Canada
train-detectionCanada

Toronto Transit Commission | Canada

Operator
TTC
Country
Canada
Partner
Alstom
Segment
Urban
Application
CBTC Fallback
Products
RSR180, ACS2000
Year
2015

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.

Frauscher entered into discussions with TTC to consider the benefits of Frauscher axle counters for this application. The transit needed to gain experience and further knowledge as to how the product would perform, so Frauscher offered a test trial for TTC to assess compatibility with their existing system. The trial also allowed them to test performance under conditions typical for the area, such as cold temperatures, ice, snow and road salting. Frauscher installed two Wheel Sensors RSR180 to work with the Axle Counter ACS2000. Although the scope of the test was small, TTC was able to experience how quickly and easily the system could be installed without affecting the daily operation of the busy commuter line. During the trial period of more than a year, there were zero miscounts recorded.

Due to the size of the upgrade and the need to minimize impact on daily operations, the project was broken down into several phases between 2020 and 2021. After completion, trains on Line 1 Yonge-University will be detected by 603 wheel sensors, which will form 469 track sections. The indoor equipment of the ACS2000 will evaluate the data in 31 cubicles located along the line.

Easy and quick installation

Per customer requirement, the wheel sensors and axle counters were installed without interfering with the track circuits already in place. Mounting of the wheel sensors was completed quickly, due to the use of the Frauscher Rail Claw. The rail claw is attached in about five minutes, without drilling the rail.

Increasing system availability

The ACS2000’s cost effective operation is further enhanced by use of optional add-on functionalities that increase reliability and uptime of the entire network such Counting Head Control CHC and the Frauscher Diagnostic System FDS.

Similar Projects
This might also interest you
1/5
train-detectionTaiwan

Shalun Signaling | Taiwan

The Shalun Line is frequented by four-car-trains and located in the south of Taiwan. Tropical conditions with temperatures between 22 and 28 degrees and high humidity are not the only challenge the Frauscher Axle Counter Solution has to deal with.
train-detectionFinland

Kokkola | Finland

Frauscher supplied one of Finland’s busiest railway lines with new Axle Counters. The line was extended from a single to a double track section and Mipro was looking for a solution which can interface with their interlocking system in an efficient and cost effective way.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionAustria

GKB Graz-Köflacher Bahn | Austria

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
train-detectionChina

Tram Huangpu Line 1 | China

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.