Increasing Availability at Adra Yard | India
train-detectionIndia

Increasing Availability at Adra Yard | India

Operator
Indian Railways - South Eastern Railway
Country
India
Partner
MRT
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Year
2022
Scope of project
139 counting heads, 97 track sections

Adra Yard belongs to the Southeastern Railway Zone of Indian Railways and is in West Bengal. Initially the yard was equipped with track circuits and there was a requirement to get them replaced with the Frauscher Advanced Counter FAdC®. This project is one of Frauscher’s esteemed Indian Railway Projects with a coverage of 139 counting heads and 97 track sections.

In this project, the FAdC® is placed in the Central Location as well as in three different end cabins. All four locations are connected in ring structure with redundant path of optical fibre cable for communication. Both the Frauscher Diagnostic System FDS are placed in Central Location and configured to connect to the rail network for remote diagnostic. The vital output of all track sections is in Central Location which is further connected to the Electronic Interlocking. Reset of all track sections can be carried out in Central Location.

The Frauscher Advanced Counter FAdC® is highly flexible regarding design and architecture. The Wheel Sensor RSR180 was also utilised, being rated IP68 protection class (waterproof) which means it is immune to floods, moisture or water. Due to the adverse weather conditions in this area, the wheel sensor’s ability to withstand such conditions is particularly useful.

Easy and cost-effective integration

Greater cost saving due to distributed architecture and lower maintenance requirement.

Increasing availability

Greater uptime and availability due to resistance to adverse weather.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Churnet Valley Heritage Railway | UK

The Churnet Valley Heritage Railway preserves England's rich heritage of steam-powered rail transport.
train-detectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura) | India

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Head Bolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.
train-detectionKazakhstan

FAdC® at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.