Three-rail Castellbisbal | Spain
train-detectionSpain

Three-rail Castellbisbal | Spain

Operator
Administrador de Infraestructuras Ferroviarias (ADIF)
Country
Spain
Partner
UTE Cormed (Joint Venture Siemens – Bombardier)
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR123, FAdC®
Protocols
Frauscher Safe Ethernet FSE
Year
2020
Scope of project
920 detection points; 19 stations

The dual-gauge system of the Spanish railway network is quite challenging in terms of track vacancy detection: Wheel sensors must be installed on two rails next to each other in tight spaces and have to detect axles reliably on the respective rail. Frauscher developed a solution which copes also with the complexity of different interlocking technology in the stations along the line.

The Spanish railway network is characterised by traditional Iberian and standard UIC gauges. On dual-gauge sections, which are becoming more frequent, track vacancy detection can be quite challenging as wheel sensors must be installed on two rails next to each other in tight spaces and detect axles reliably on the respective rail.

However, Frauscher developed a three-rail solution for the dual-gauge section between Castellbisal and Tarragona that fulfils all requirements stipulated by the Spanish railway infrastructure manager ADIF and successfully proves the seamless integration of its solutions with different interlocking technologies along the line.

This is made possible through the Frauscher Advanced Counter FAdC® that provides the Frauscher Safe Ethernet FSE interface for Bombardier installations while for Siemens installations the customer-specific protocol WNC is used, proving its flexibility and versatility while complying with both customer-specific protocols and standard protocols like EULYNX. In addition to clear/occupied information from a section, it also states on which gauge the train is running.

The project started in March 2020 and comprises 920 detection points in 19 stations. Addressing the above challenges of limited spacing for mounting, Frauscher Wheel Sensors RSR123 and a specially developed type of the Frauscher rail claw SK150 are deployed.

Flexible and universally applicable interfaces

The FAdC® proved its flexibility and versatility as an optimal solution for this project: Whilst for Siemens installations the customer-specific protocol WNC is used as interface, it provides the Frauscher Safe Ethernet FSE interface for the Bombardier installations.

Easy access to more data

The FAdC® three-rail solution provides not only clear/occupied information of a track section, but also detects on which gauge the train is running.

Easy mounting and installation

Frauscher wheel sensors are mounted on the inner side of the rail only. With the RSR123 it is possible to mount two sensors on the neighbouring rails of both gauges and fully parallel in the same sleeper space.

Similar Projects
This might also interest you
1/5
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionFrance

Extension Line D Tram Bordeaux | France

The Bordeaux tramway was the first French tram system equipped with a Frauscher axle counting system, benefitting from the innovative management methods like Counting Head Control.
train-detectionChina

Beijing Metro Line 12 | China

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2024.
train-detectionUnited States of America

Reducing Delays in a Metro (subway) Environment | USA

A large metro operator was researching ways to reduce bottlenecks that were causing significant delays at a busy station. With two routes dividing in close proximity to the station and a complex auto-routing system that required the use of a 30-second timer to release switches, trains would frequently back up when approaching the station.
train-detectionCanada

Toronto Transit Commission | Canada

The Toronto Transit Commission (TTC) Line 1 Yonge-University is Toronto’s longest subway line, with track circuits utilized for signalling. Due to an increasing number of daily passengers and an aged system the need for upgrading without interfering with the daily operations became readily apparent. It was further required that the new signalling system functions independently of the existing system. It would provide CBTC fallback functionalities, and work as an overlay to the current track circuit-based system.