Vijayawada – Gannavaram Rail Line | India
Train DetectionIndia

Vijayawada – Gannavaram Rail Line | India

Operator
Indian Railways - South Central Railway
Country
India
Partner
Progressive Engineering Enterprises
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
RSR180, FAdC®
Year
2017
Scope of project
88 counting heads, 44 track sections

The Vijayawada – Gannavaram rail line belongs to South Central Railway and is situated in Andhra Pradesh. Initially, the line featured a conventional signalling system and there was a requirement by the operator to update this into an automatic signalling system with the Frauscher Advanced Counter FAdC®. The project consists of 88 counting heads and 44 track sections and the type of architecture used in this project is a dual redundant distributed architecture with an Ethernet based communication for the automatic signalling system.

To fulfill the requirements of the operator, the Frauscher Wheel Sensor RSR180 along with the FAdC® and its highly configurable system architecture were used in this project. Additionally, the Supervisor Track Section STS function has also been implemented on this line for the purposes of auto resetting in case of false errors, again leading to greater system availability and reduced downtime.

The conversion from a conventional signalling system into an automatic signalling system for detecting trains has offered a wide array of benefits for the operator. Power consumption for every detection point is very low for the FAdC® which leads to cost saving for operators throughout the lifecycle of the system. Furthermore, deploying the FAdC® has enhanced the line capacity of the railway system and led to a reduction in the waiting time of trains for track vacancy clearance.

Increasing Availability

The FAdC® provides a dual detection system alongside COM, PSC and network redundancy which further enhances the availability of the system in the automatic block sections.

Greater Operational Efficiency

The automatic block section with FAdC® has been designed in a way that enables trains which travel in the same direction to follow each other in a safe manner, thus enhancing the line capacity of the railway system.

Similar Projects
This might also interest you
1/5
Train DetectionUnited States of America

Frauscher Track Vacancy System FTVS Testing | USA

During the initial development phase of the Frauscher Track Vacancy System FTVS, a number of pre-production units were released for real-world testing to examine their performance in typical yard environments. Consequently, several trials were conducted in the United States.
Train DetectionIndia

Western Dedicated Freight Corridor (Rewari – Makarpura) | India

The Western Dedicated Freight Corridor (WDFC) represents one of the most strategically significant freight transportation projects in India. By facilitating the seamless transport of goods between major economic hubs, the intention is that the WDFC will significantly boost economic growth and development in the local region and beyond, further underlying the importance of this project.
Train DetectionChina

Beijing Metro Line 12 | China

The Beijing Metro Line 12 is the first metro line that combines Frauscher Advanced Counter FAdC® and Railway Signal Safety Protocol Type I (RSSP-I). The line is currently under construction and expected to be put into operation at the end of 2023.
Kazakhstan

FAdC® at Uglerudnaya Station | Kazakhstan

AcelorMittal is the operator of the Uglerudnaya industrial railway station, located in Temirtau, Kazakhstan. The station features a total of 56 switches and 52 track sections to enable the smooth flow of train traffic. To ensure the safety of all trains, an interlocking system is used to establish secure routes for incoming, outgoing, and passing trains. This requires effective traffic management and a dependable train detection system to detect the presence of trains on the tracks.
Train DetectionUnited States of America

Tracking Trains in Houston | USA

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.