train-detectionUnited States of America

MTA Baltimore North Avenue Yard | USA

Operator
MTA Maryland
Country
United States of America
Partner
M.C. Dean
Segment
Main & Regional Line
Application
Track Vacancy Detection
Year
2015
Scope of project
31 wheel sensors

In this project, reliable and precise train detection was needed to automate the yard and significantly increase efficiency and safety. To meet these requirements, the Frauscher Advanced Counter FAdCi and Wheel Sensors RSR180 were selected for this automation project.

The MTA Baltimore North Avenue Yard is a light rail vehicle maintenance and storage facility. Faced with operational and safety concerns due to manual switch operations requiring train drivers to leave their vehicles, the Maryland Transit Authority (MTA) sought to automate the yard to improve safety and efficiency. In addition, the MTA was looking for speed measurement and storage track monitoring capabilities. Together with integrator M.C. Dean, the operator chose the Frauscher Advanced Counter FAdCi with Wheel Sensors RSR180 for this project. The Frauscher axle counting system was integrated with the Schneider Electric Quantum PLC, with the Programmable Logic Controller connected to the FAdCi using the FSE protocol to consolidate data from all evaluation boards. The FAdCi also provides additional advantages, such as the aforementioned Frauscher Safe Ethernet FSE protocol that reduced wiring and maintenance costs, allowing the seamless exchange of data. The FAdCi's modular design provides flexibility to distribute the system across multiple locations using an Ethernet connection to exchange information. Its software-based output avoids the high maintenance costs associated with traditional relays that require bonds and joints.

In addition, the installation of this solution did not require drilling or any track modifications, which considerably simplified the entire process and reduced costs. Frauscher provided training to enable MTA staff to operate and maintain the system independently, further improving its cost-effectiveness. The FAdCi also provides real-time data regarding the number of axles stored in a track section to determine space and availability, leading to greater efficiency and smoother operations.

Enhanced Safety

Operators no longer need to exit the vehicle to throw switches, reducing the risk of accidents.

Cost-Effectiveness

The robust solution offered by Frauscher provides a high level of reliability and availability that minimizes system downtime. The ability of trained MTA staff to operate and maintain the system independently further reduces costs.

Operational Efficiency

Real-time data enables better scheduling and yard management, improving the overall flow of vehicle movements and storage track monitoring.

Similar Projects
This might also interest you
1/5
train-detectionChina

Fenghuang Maglev | China

Fenghuang Maglev is a medium-low speed maglev rapid transit line. Since maglev trains do not have wheels, traditional wheel-based detection systems cannot be directly applied to maglev traffic engineering.
train-detectionUnited Kingdom of Great Britain and Northern Ireland

Wherry Lines | UK

The Wherry Lines are railway branch lines in East Anglia in the East of England, linking Norwich – Great Yarmouth – Lowestoft. The project aimed to integrate Frauscher Advanced Counter FAdC into two external systems to mitigate against a train passing a red signal without authority on approach to level crossings.
train-detectionAustria

GKB Graz-Köflacher Bahn | Austria

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
train-detectionUnited States of America

Class 1 Grade Crossing Enhancement FAdC and RSR180 | USA

Frauscher was approached by a US Class 1 railroad regarding a grade crossing owned and operated by them, on a track crossing a public road. The operator’s main goal was to find a signaling solution that would seamlessly integrate with the current crossing controller and keep the crossing operational under challenging operational conditions. The Frauscher Advanced Counter FAdC and Wheel Sensor RSR180 were chosen as the ideal solution for this particular project.
train-detectionChina

Tram Huangpu Line 1 | China

Tram Huangpu Line 1 (HP1) line is located in urban areas with high traffic density and passenger volume as well as many level crossings. The adverse weather conditions can cause flooding of the track bed and add to the challenges for reliable system availability and operations.