Tracking Trains in Houston | USA
train-detectionUnited States of America

Tracking Trains in Houston | USA

Operator
MTA Houston
Country
United States of America
Partner
MEC Mass Electric Corp.
Segment
Main & Regional Line
Application
Track Vacancy Detection
Products
FAdC®, RSR180
Year
2016
Scope of project
565 wheel sensors, 103 equipment locations

Houston MetroRail (METRO for short) is comprised of three light-rail lines covering 22 miles. Two-car, low-floor trainsets are powered by overhead catenary and operated on a mix of rail types, including embedded, grooved, concrete, and ballasted track. Harsh weather conditions such as extreme heat, humidity, and storms with heavy rains causing floods are typical for Houston. Combined with the variable track structure this caused significant malfunctions of the wheel sensors of METRO’s signalling system.

In order to improve the system, METRO conducted trial installations with several suppliers of axle counter solutions to demonstrate features and the overall performance of their respective products. Due to the complicated track structure and environmental conditions, Frauscher quickly understood that the required wheel sensors had to be simple to install, immune to extreme heat as well as waterproof as floods could easily occur. The trial results demonstrated that the Frauscher Advanced Counter FAdC® met all of METRO’s requirements in terms of environmental influences, interfaces, reliability and seamless integration into the existing infrastructure.

The flexible design of the FAdC® allows efficient data transfer via relay interface to the traffic control system and interlocking. Additionally, two optional intelligent functions, Supervisor Track Sections and Counting Head Control, were used to counter the effects of unexpected influences such as metallic debris. The installed Frauscher Wheel Sensor RSR180 is extremely robust and not affected by any environmental influences.

In total, 565 Wheel Sensors RSR180 were installed along the rail line, and the axle counter Frauscher Advanced Counter FAdC® in 103 locations throughout the network to guarantee a flawless operation of the line.

Excellent match of requirements

The Frauscher axle counting solution met all of METRO’s environmental, interface and reliability requirements. The straightforward installation and smooth transition from the existing train detection system was highly appreciated by the operator.

Reduction of costs

The new system caused a significant reduction in down time and maintenance costs, which will continue to add up over the lifecycle of the system. The additional smart functionalities that were implemented increased the availability of the system even further.

Similar Projects
This might also interest you
1/5
train-detectionAustria

GKB Graz-Köflacher Bahn | Austria

The operator of the Graz-Köflacher Bahn has made substantial modernisations to the network, choosing a decentralised system architecture and the EULYNX standardised interface. In this case, it was crucial that the new system would ensure a seamless transition from the previous parallel interface for relay systems to EULYNX.
train-detection, servicesIndia

Sini - Chandil Railway Line | India

The Sini-Chandil railway line is a crucial rail connection located in the state of Jharkhand, which lies in the eastern coastal region of India. This railway line holds significant strategic importance for the entire region, and now incorporates Frauscher solutions, including the Frauscher Advanced Counter FAdC®, Wheel Sensor RSR180 and the Frauscher Insights applications Diagnostics and Motion.
train-detectionGermany

Dillinger Hütte | Germany

A new ladder track was required to provide more parking tracks in the steel plant. At the same time, the layout of the dead end tracks were optimised and the efficiency of the whole depot improved by installing the Frauscher Advanced Counter FAdC®i in combination with the wheel sensor RSR180. With the implementation of the Frauscher Diagnostic System FDS, the overall maintenance costs can be significantly reduced.
data-transmissionUnited Kingdom of Great Britain and Northern Ireland

Headbolt Lane to Rainford Project | United Kingdom

As part of the project to expand Merseyrail services, the operator needed to address the challenge of transmitting indication information over a specific section, spanning from Headbolt Lane to Rainford. In this instance, Frauscher’s technology was utilised to fulfill the data transmission requirements of this project, avoiding expensive and time consuming cabling that would have otherwise been required.
train-detectionUnited States of America

Charlotte Area Transit System (CATS) Supplementing Audio Frequency Track Circuits with Axle Counters | USA

At the Charlotte Area Transit System, frequent false red signal overruns resulted when electromagnetic interference caused “bobbing” of the line’s audio frequency track circuits. The Frauscher Advanced Counter FAdC® was subsequently considered as an alternative to these track circuits to eliminate the occurrence of false red signal overruns.